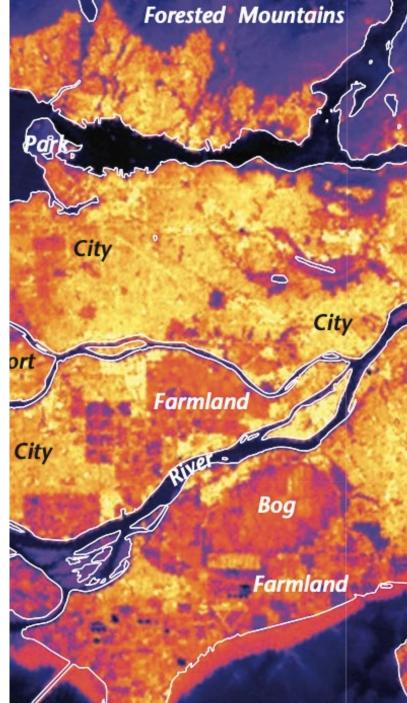


CIVIL-309: URBAN THERMODYNAMICS

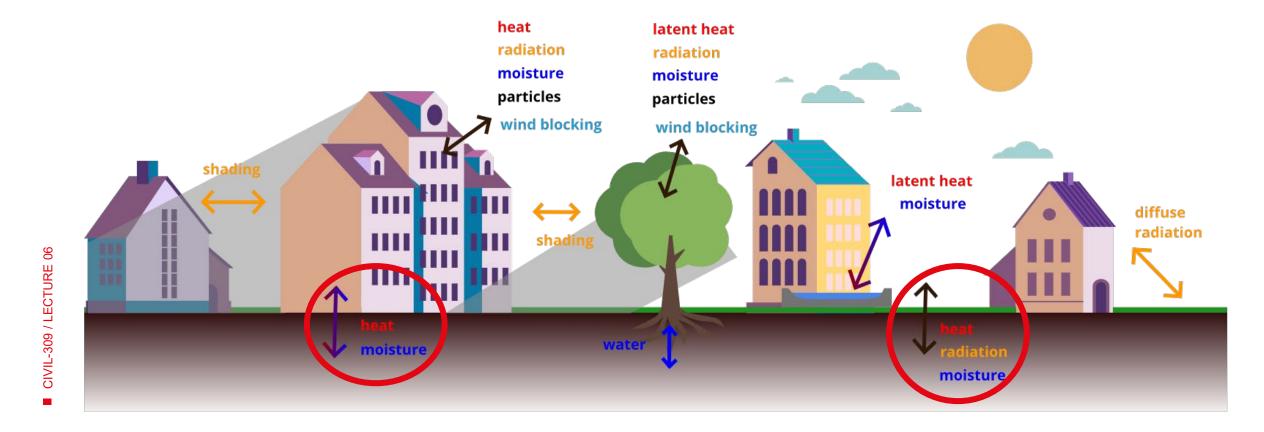
Assist. Prof. Dolaana Khovalyg

Lecture 06:


Ground-Environment Interactions

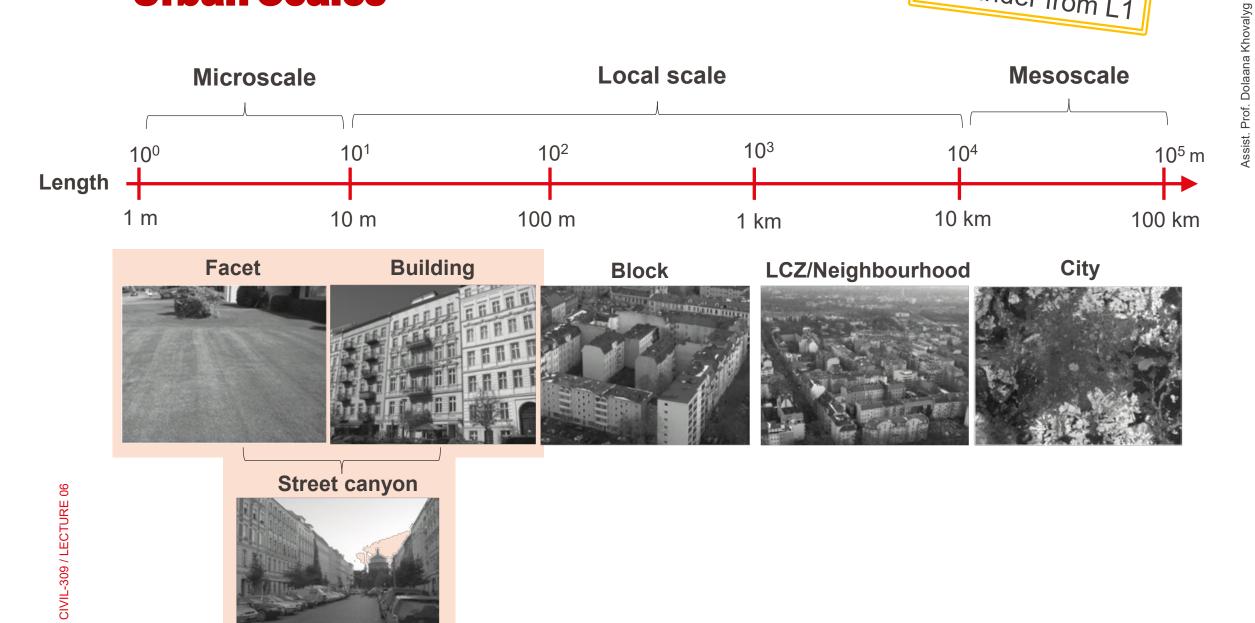
EPFL Course Schedule

1					
8	28.10	2 x 45′	L5	Building-environment interaction: thermal, aerodynamic, and hydrodynamic interaction	DK
		1 x 45'	P5	Group work—simulation practice based on L5: building-environment interactions, workflow to create and modify building geometry, and materials for building walls and roofs. Data visualization for building surface temperature and visualization for scenario comparison	KL
9	04.11	2 x 45′	L6	Ground-environment interaction: ground properties, thermal, aerodynamic, and hydrodynamic interaction	DK
		1 x 45′	P6	Group work – simulation practice based on L6: relevant parameters for ground materials, soil profile, and data analysis regarding ground-environment interactions	KL
10	11.11	2 x 45′	L7	Water body - environment interaction: thermal, aerodynamic, and hydrodynamic interaction	KL
		1 x 45′	P7	Group work – simulation practice based on L7: workflow to create different water bodies and fountains in ENVI-met and data analysis for water-environment interactions	KL
11	18.11	2 x 45′	L8	Vegetation – environment interaction: characteristics of vegetation, evapotranspiration, aero- and thermal interaction	KL
		1 x 45′	P8	Group work – simulation practice based on L8: two modes of vegetation models in ENVI-met and methods to create new vegetation profiles, green walls and roofs, data analysis for vegetation-environment interactions	KL



CONTENT:

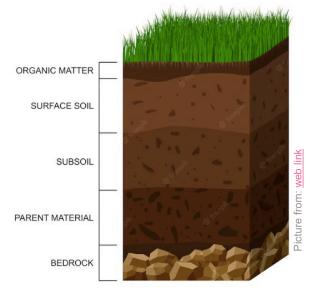
- **Ground characteristics**
 - Definitions: ground vs. soil
 - Thermo-physical properties
- Ground-environment interaction
 - Surface and sub-surface temperatures
 - Ground heat flux
 - Evaporation from the ground
- Ground-building interaction

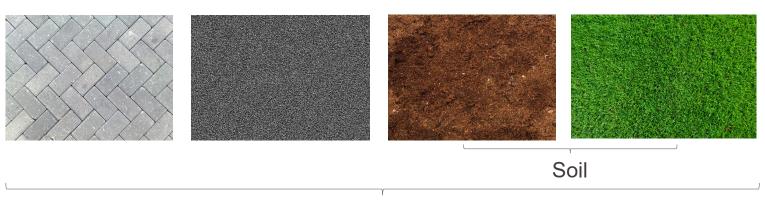

EPFL Ground-Environment Interaction

- Ground interacts with buildings, vegetation and the atmosphere above it.
- Ground exchanges heat and moisture with buildings above. In addition, it exchanges thermal radiation with the atmosphere.
- Water exchange between ground and vegetation will be tackled in Lecture 7

EPFL Urban Scales

ssist Prof Dolaana Khov

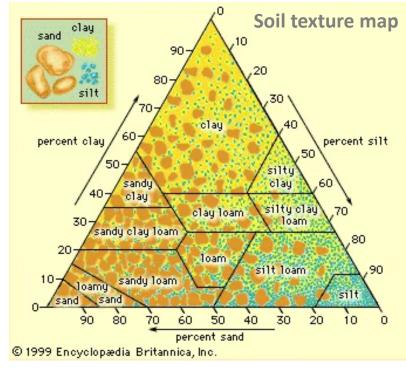

- Ground is the surface of the Earth. Ground is used indifferently to describes the surface and the volume of matter below it (i.e. soil).
- Soil is a mixture of organic matter, minerals, gases, liquids and organisms. Soil is a three-state system composed of solids, liquids and gases. It is usually structured into layers of different composition.



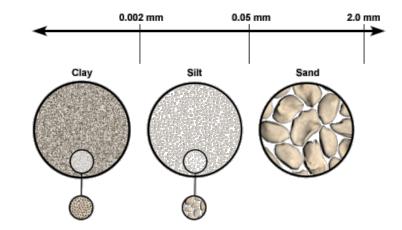
CIVIL-309 / LECTURE 06

Artificial: pavement

Natural: bare soil or soil with vegetation



re from: web lin

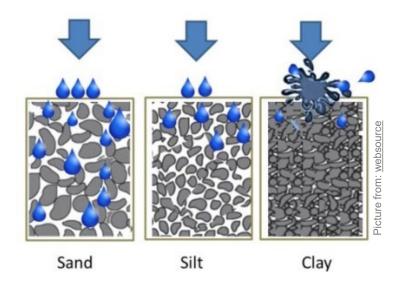

Soil characteristics: Composition

- Solid part is composed of different fractions of:
 - Sand: mostly quartz, with no internal pore space
 - Silt: mostly quartz, size smaller than sand quartz
 - Clay: clay minerals that are aluminosilicate sheets separated by lamellar space
 - Organic matter (active, slow, and passive): living materials that fix and store carbon and deliver it as a source of energy to the soil
 - Others: calcium carbonate, iron, aluminum, etc.

Particle Diameter

Soil characteristics: Composition

- Water and gas is stored in pores (voids between soil particles). Size of pores vary greatly with the type of soil (clay: $1 nm 0.5 \mu m$, sand: $10 500 \mu m$).
- The fraction of voids depends on the degree of compaction of the soil (typically, 35-70%).
 - Bulk density measure of compaction:


(6-1)
$$\rho_b = \frac{m_{s,solids}}{V_s}$$
 $m_{s,solids}$ (kg) - soil solids mass V_s (m^3) - volume of the soil

Volume fraction occupied by solids :

(6-2)
$$\phi_{solids} = \frac{m_{s,solids}}{V_s} \times \frac{V_{s,solid}}{m_{s,solid}} = \frac{\rho_b}{\rho_{particle}}$$

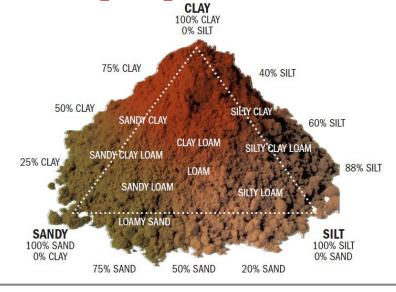
where $m_{s,solids}$ (kg)- soil solids mass, $V_{s,solid}$ (m^3) - volume of the soil solids, $\rho_{particle}$ (kg/m^3) - solid particle density (for *quartz* and most *clay* minerals $\rho_{particle}$ is remarkably similar \sim **2600** kg/m^3).

o **Porosity** of the soil: **Porosity** = $1 - \phi_{solids}$ (6-3)

Soil texture	Bulk density (gcm ⁻³)	Porosity
Sandstone	2.1	0.19
Sandy loam subsoil	1.65	0.36
Sandy loam plough layer	1.5	0.42
Clay loam subsoil	1.45	0.44
Recently ploughed clay loam	1.1	0.58

Source: Houghton, Introduction to environmental physics, p. 322

Overall density of the soil considering solid, liquid, and gaseous content is defined by apparent soil density ρ' (kg/m^3)

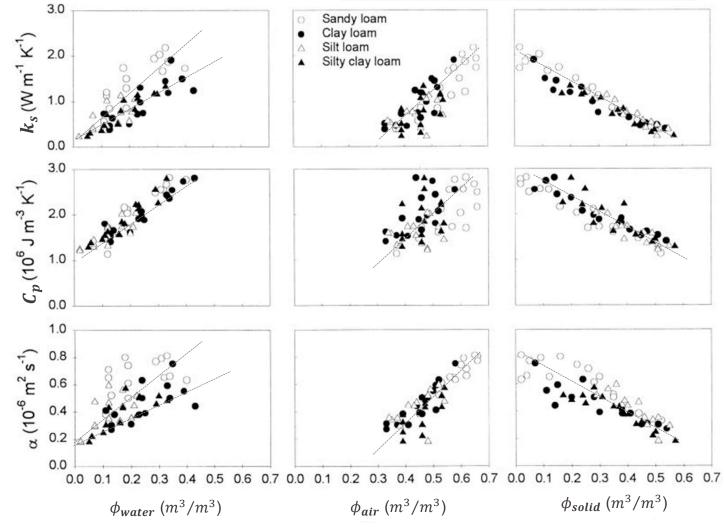

$$\rho_{s}' = \rho_{solid} \cdot \phi_{solid} + \rho_{liq} \cdot \phi_{liq} + \rho_{gas} \cdot \phi_{gas}$$

$$\phi_{i} (m^{3}/m^{3}) - \text{volume fractions of } i\text{-th component} \qquad (6-4)$$

Picture from: websource

Soils characteristics: Thermo-physical properties

- Soil properties determining its thermal behavior:
 - Apparent soil density ρ_s' (kg/m^3)
 - Specific heat $c_{p,s}(J/kg \cdot K)$
 - Heat capacity $C_{p,s}$ $(J/m^3 \cdot K)$
 - Thermal conductivity k_s ($W/m^2 \cdot K$)
 - Thermal diffusivity α_s (m^2/s)

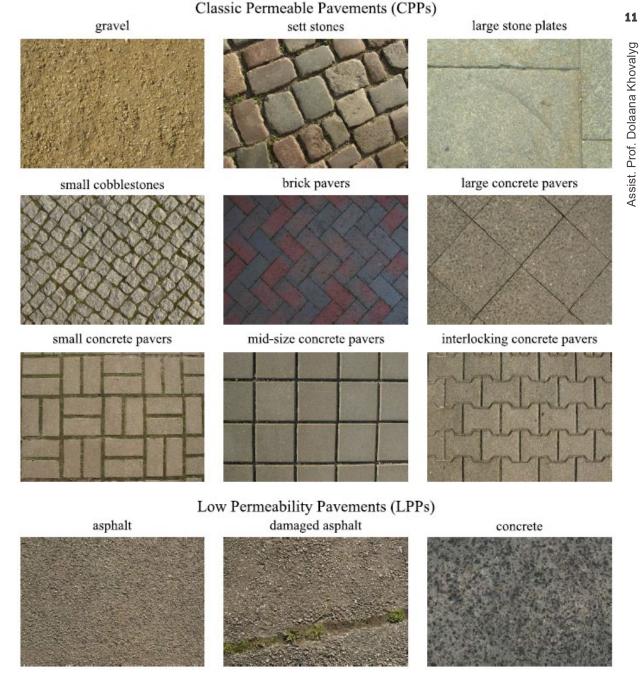

Material	Condition	Mass density ρ (kg m ⁻³ × 10 ³)	Specific heat c_p (J kg ⁻¹ K ⁻¹ × 10 ³)	Heat capacity C_p (J m ⁻³ K ⁻¹ × 10 ⁶)	Thermal conductivity k_s (W m ⁻¹ K ⁻¹)	Thermal diffusivity α (m ² s ⁻¹ × 10 ⁻⁶)
Air	20°C, Still	0.0012	1.01	0.0012	0.025	20.5
Water	20°C, Still	1.00	4.18	4.18	0.57	0.14
Ice	0°C, Pure	0.92	2.10	1.93	2.24	1.16
Snow	Fresh	0.10	2.09	0.21	0.08	0.38
Snow	Old	0.48	2.09	0.84	0.42	0.05
Sandy soil	Fresh	1.60	0.80	1.28	0.30	0.24
(40% pore space)	Saturated	2.00	1.48	2.96	2.20	0.74
Clay soil	Dry	1.60	0.89	1.42	0.25	0.18
(40% pore space)	Saturated	2.00	1.55	3.10	1.58	0.51
Peat soil	Dry	0.30	1.92	0.58	0.06	0.10
(80% pore space)	Saturated	1.10	3.65	4.02	0.50	0.12
Rock	Solid	2.70	0.75	2.02	2.90	1.43

Soils characteristics: Thermo-physical properties

- Soil properties depend on its type and vary spatially and temporally:
 - O Dependent on the volume fraction of water (ϕ_{water}) , volume fraction of solids (ϕ_{solid}) , and volume fraction of air (ϕ_{air})
 - o Heat capacity $C_{p,s}$ and thermal conductivity k_s increase with **moisture** content (moist soil store and conduct heat better than dry soil)
 - o Thermal conductivity k_s and diffusivity α_s of quartz are higher than for clays.

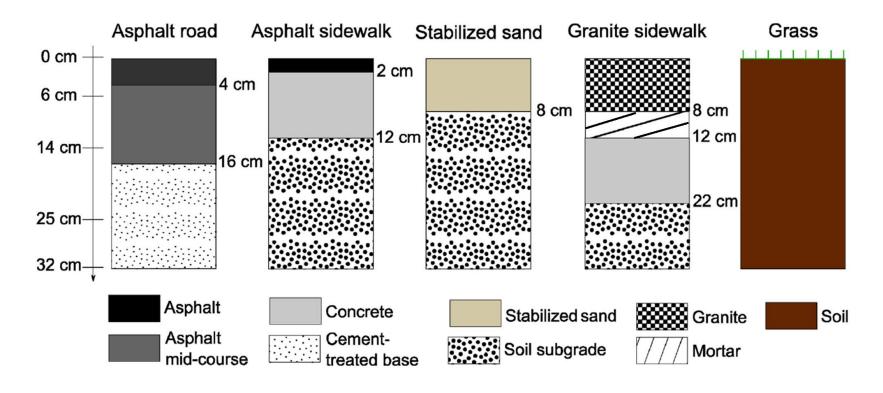
Properties of 4 medium-textured soils (59 samples):

		Texture	Organic	Particle		
Soil	Sand	Silt	Clay	matter	density	
		— % —		%	Mg m ⁻³	
Sandy loam	66	23	11	2.3	2.58	
Clay Ioam	37	35	28	2.3	2.60	
Silt loam	23	64	13	0.9	2.70	
Silty clay loam	12	56	32	1.1	2.73	



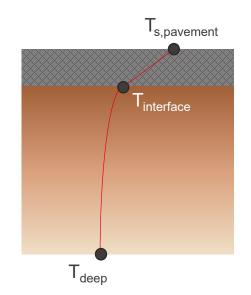
EPFL Urban artificial surfaces

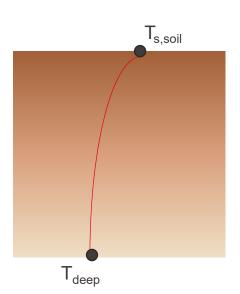
- Paved areas represent 30-45% of land cover in cities, additional 20% of the land cover is roofed. They are *major* contributors to the urban heat island (UHI) effect.
- Paving can consist of a single continuous cover (e.g., asphalt or concrete) or an assembly of individual pavers (e.g., made of stone, concrete, or brick).


The joints of individual pavers allow water to infiltrate into the underlying soil; thus, pavement vary regarding their impermeability.

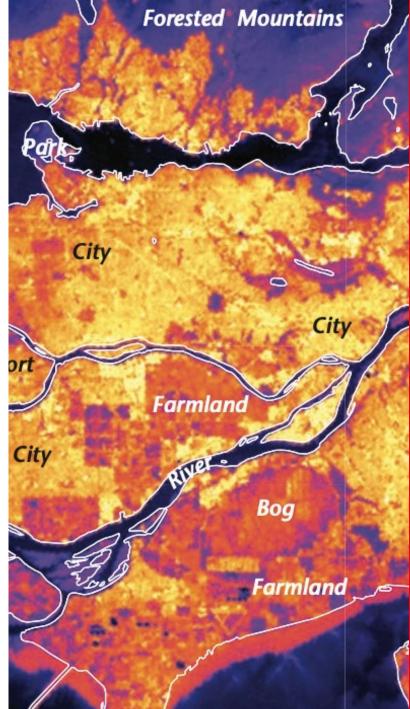
- Surfaces with all types of paving are considered sealed soils altering hydrological balance.
- Properties of artificial surfaces correspond constituent properties of construction materials (e.g., asphalt, concrete, granite, sand, etc.).

Source: Timm A. (2019) Water and heat transport of paved surfaces, PhD thesis.

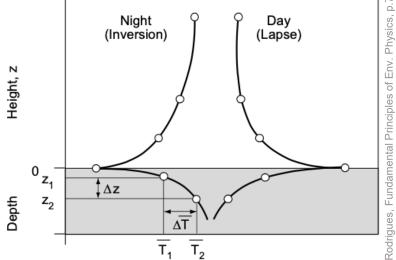

EPFL Urban artificial surfaces: Thermo-physical properties



	Asphalt road surface course	Asphalt mid- course	Cement-treated base	Asphalt sidewalk surface course	Concrete	Stabilized sand	Granite	Mortar
$k \text{ (W.m}^{-1}.\text{K}^{-1})$ $\rho \text{ (kg.m}^{-3})$ $c_p \text{ (J.kg}^{-1}.\text{K}^{-1})$	2305 ± 37	1.63 ± 0.08 2360 ± 34 806 ± 118	1.18 ± 0.04 1946 ± 96 714 ± 59	2.01 ± 0.05 2325 ± 34 900 ± 56	1.96 ± 0.05 2301 ± 50 777 ± 10	1.20 ± 0.08 2090 ± 42 690 ± 21	2.31 ± 0.15 2608 ± 18 759 ± 63	2.90 ± 0.20 2157 ± 14 946 ± 85
		Asphalt road	Asph	alt sidewalk	Stabilized	sand	Gr	anite sidewalk
Albedo	Albedo 0.128 ± 0.028		0.193 ± 0.026		0.414 ±	0.022	0.3	342 ± 0.022


Soil vs. Pavement: Thermal Behavior Comparison

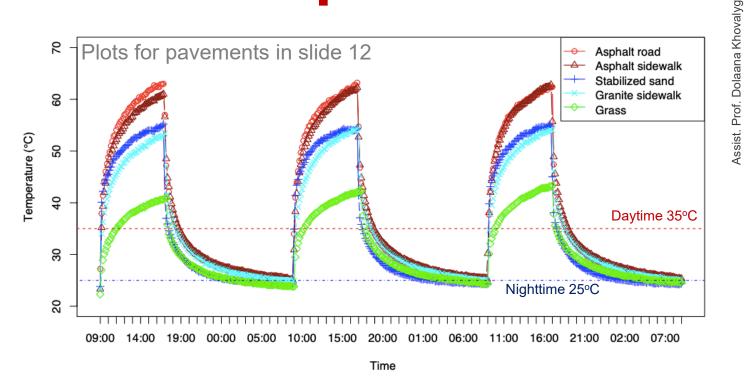
Parameter	Soil	Pavement	Resulting effect
Temperature T_s (K)	↑	$\uparrow\uparrow\uparrow$	Greater emitted radiant heat and convection
Emissivity $arepsilon$	≈	≈	Similar emissivity, but higher radiant heat flux due to the high T_{s}
Albedo a	↓	↓ ↓ ↓	Greater heat from solar radiation is absorbed by pavements $Q^*_{pavement} > Q^*_{soil}$
Conductivity $k \left(\frac{W}{m \cdot K}\right)$	1	$\uparrow\uparrow\uparrow$	Greater rate of conductive heat transfer into the material
Diffusivity $\alpha \left(\frac{m^2}{s}\right)$	1	$\uparrow\uparrow\uparrow$	Heat travels more rapidly through the pavement, more heat storage, high thermal inertia

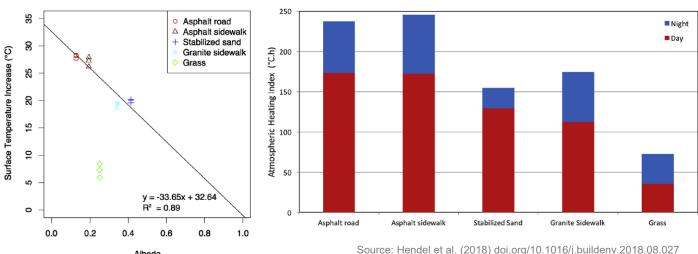

CONTENT:

- . Ground characteristics
 - Definitions: ground vs. soil
 - Thermo-physical properties
- **II.** Ground-environment interaction
 - Surface and sub-surface temperatures
 - Ground heat flux
 - Evaporation from the ground
- **III.** Ground-building interaction

EPFL Ground characteristics: Surface Temperature

- Surface temperature T_s (K or °C): temperature of a ground at its outer limit, at its surface in contact with air.
 - o It is determined by **the surface energy balance** affected by the radiation budget, atmospheric processes, and presence of vegetation and plant cover.
 - o It follows a *daily* and *seasonal variation* delayed with respect to of solar radiation and air temperature.
 - o The *amplitude* of the variation depends on the *soil's* properties.
- Temperature on both sides of the surface varies exponentially (air temperature can have ~20 K difference over 1 mm next to the heated surface).
- Surface temperature is often determined by extrapolation of measured temperature profiles in soils and air, by knowing their theoretical behavior.
- Sub-surface temperature in the *first 10 cm under ground surface* is typically measured.

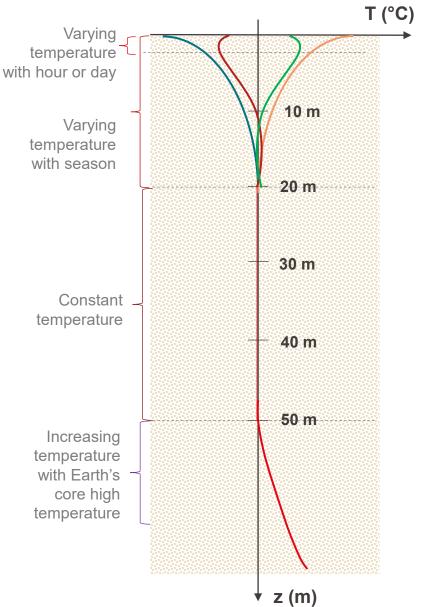




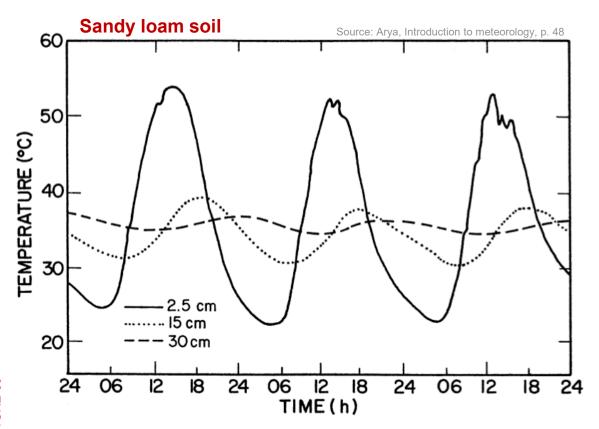
Temperature, T

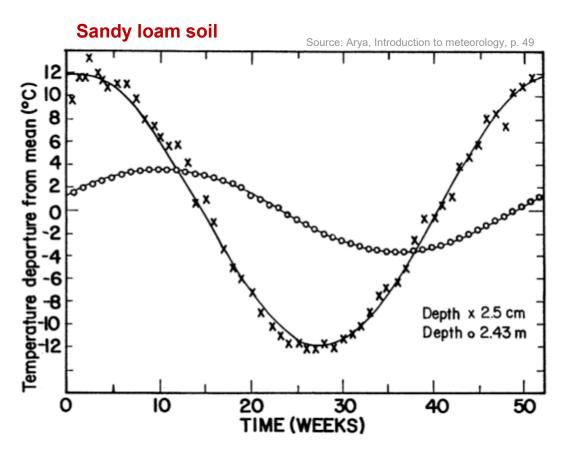
EPFL Ground characteristics: Surface Temperature

- The daily variation of a pavement surface temperature exhibits high amplitude.
 - At daytime: the pavement surface temperature increases and the pavement absorbs energy (to be stored).
 - At nighttime: T_{air} is colder than the pavement surface temperature, and the radiation flux is negative; thus, the pavement surface temperature decreases. The energy stored during day is released at night.
- Sensible heat released from a paved ground is higher compared to the soil ground diurnally, leading to greater atmospheric heating.



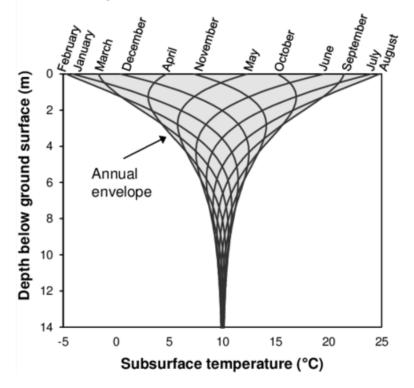
Albedo


CIVIL-309 / LECTURE 06

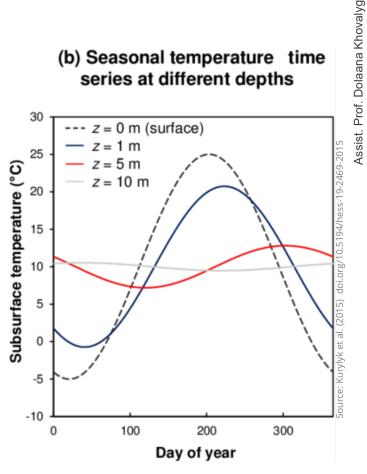

EPFL Ground characteristics: Sub-surface Temperature

- The sub-surface temperature varies along its depth:
 - o Right below the surface, temperature *varies* with *atmospheric conditions*.
 - o After a certain depth, the impact of the atmospheric conditions on temperature *is negligible*, ground temperature is *constant*. For Lausanne, it is ~14°C.
 - Ounder 50 m below the surface, the ground temperature increases due to the geothermal heat flux from the Earth's core.
- Two types of ground sub-surface temperature variation:
 - Diurnal variation: up to 1 m under ground surface
 - Seasonal variation: up to 20 m under ground surface
- The ground sub-surface temperature depends on:
 - Surface energy balance affecting temperature variation up to 20 m depth
 - o Thermo-physical properties of the soil (depends on the soil structure and composition, moisture content)

EPFL Sub-Surface Temperature: Diumal vs. Seasonal variation

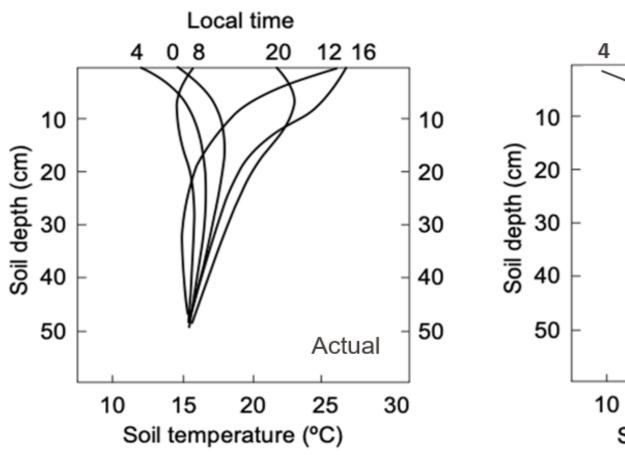


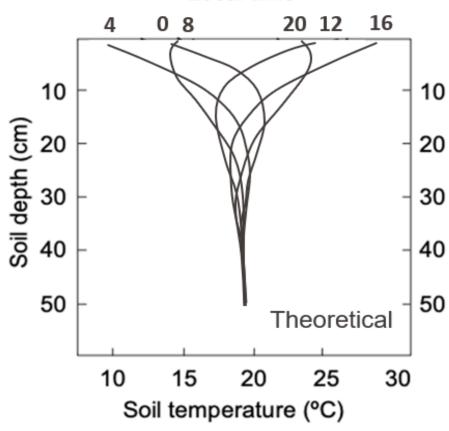
EPFL Ground Temperature: Thermal Wave


- Heat in the ground (solid media + still fluid) is transferred primarily through conduction.
- To determine *theoretically* the propagation thermal waves in solids, the temperature variation is determined from onedimensional transient conduction:

$$\frac{\partial^2 T}{\partial z^2} = \frac{1}{\alpha} \cdot \frac{\partial T}{\partial t} \quad (6-5)$$

(a) Seasonal temperature depth profiles for each month


(b) Seasonal temperature time series at different depths



Assumptions to resolve the temperature wave:

- Boundary conditions: $T = T_s$ at z = 0 and $T = T_m$ at $z \to \infty$, Initial condition: $T = T_m$ at t = 0
- Surface temperature is a *sinusoidal function* of time
- Subsurface medium is *homogeneous* throughout *the depth* of wave propagation
- Thermal diffusivity remains constant over the whole period

EPFL Ground Temperature: Thermal Wave

Local time

- Subsurface medium is not homogeneous throughout the depth of wave propagation
- Thermal properties vary with the depth and depending on the water content

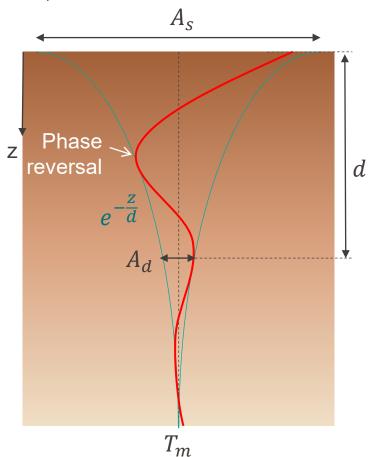
- Subsurface medium is *homogeneous* throughout the depth of wave propagation
- Thermal diffusivity remains constant

EPFL Ground Temperature: Thermal Wave

■ Transient ground temperature variation along the depth z (a solution of Eqn. 6-5):

$$T(z,t) = T_m + A_S \cdot \exp(-\frac{z}{d}) \cdot \sin[\frac{2\pi}{P} \cdot (t - t_m) - \frac{z}{d}] \quad \text{(6-6)} \quad \text{where} \quad d = \sqrt{P \cdot \alpha_S / \pi} \quad \text{(6-7)}$$

P(s) - period of the thermal wave (24 h for a diurnal and 365 days for an annual wave),


 $T_m(K)$ - mean temperature of the surface,

t(s) – actual time, $t_m(s)$ - time when temperature of the surface is T_m ,

 A_s (K or oC) - amplitude of the surface temperature wave at the surface,

d(m) – damping depth.

- The **amplitude** $A_s \cdot exp(-\frac{z}{d})$ of the thermal wave decreases exponentially with depth:
 - at z = d, the amplitude is reduced to ~37% of its value at the surface
 - at z = 3d, the amplitude decreases to ~5% of the surface value
- The **damping depth** *d* indicates *the depth* at which the amplitude of the soil temperature oscillation is only 37% of the amplitude at the soil surface
- The **phase lag** z/d relative to the surface wave increases in proportion to depth, so there is a *complete reversal* of the wave phase at $z = \pi \cdot d$
- The time lag $\tau = z \cdot P/2\pi d$ of max or min temperature is *proportional* to depth.

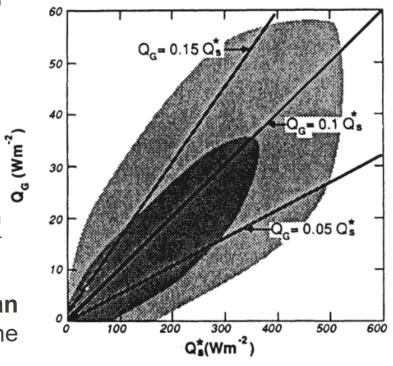
CIVIL-309 / LECTURE 06

EPFL Ground Heat Flux

- Heat in the ground (solid media + still fluid) is primarily transferred through conduction.
- Ground heat flux Q_G (W/m^2) can be determined from the Fourier's Law of conduction.

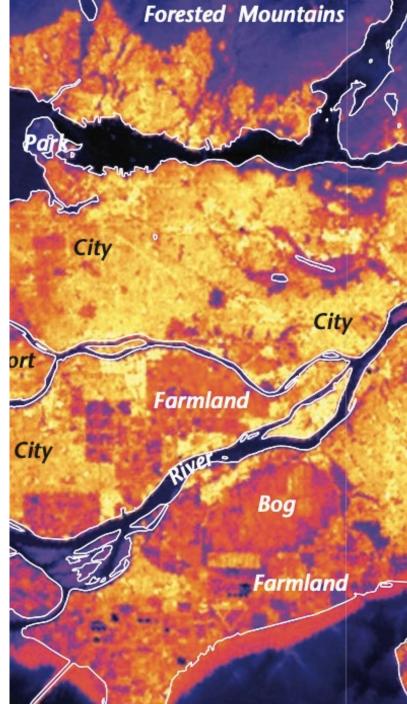
$$Q_G = -k \cdot \left(\frac{dT}{dz}\right)_{z=0} \tag{6-8}$$

• Ground heat flux Q_G (W/m^2) by using the *sin* thermal wave in Eqn. (6-6) into Eqn. (6-8):


$$\mathbf{Q}_{\mathbf{G}} = \sqrt{2 \cdot \pi \cdot C_{p,S} \cdot k_{S}/P} \cdot A_{S} \cdot \sin\left(\frac{2\pi}{P}(t - t_{m}) + \frac{\pi}{4}\right) \quad (6-9)$$

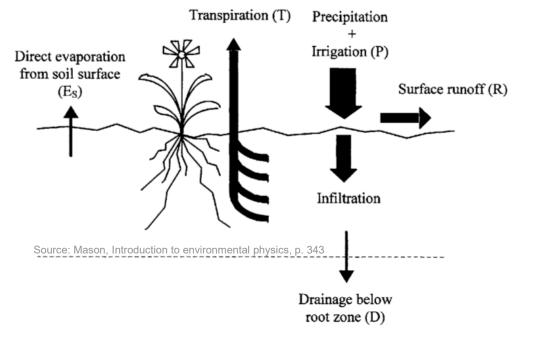
The **alternative way** to determine Q_G is to assume it is a fraction of the net radiation of the ground surface or of the sensible heat of the air:

$$Q_G = a \cdot Q^*$$
 (6-10a) OR $Q_G = b \cdot Q_H$ (6-10b)


The fractions a and b are determined *empirically* and have *different values* between **day** and **night** (e.g., a = 0.1 at daytime, and 0.5 at night). This model is not valid for transition periods during morning and evening and over water surfaces.

• The definition of Q_G is only relevant for periods shorter than days. Diurnally, the net ground heat flux is often near zero (the heating during the day is balanced by the cooling at night).

Source: Stull, An introduction to boundary layer meteorology, p. 283


CONTENT:

- Ground characteristics
 - Definitions: ground vs. soil
 - Thermo-physical properties
- **II.** Ground-environment interaction
 - Surface and sub-surface temperatures
 - Surface energy balance and ground heat flux
 - Evaporation from the ground
- **III.** Ground-building interaction

EPFL Evaporation from the Land Surface

- Ground stores water in its pores and it is a source of **moisture** for the environment above Water is transferred from the ground to the ambient air by evaporation.
- Evaporation happens if there is:
 - A *supply of energy* (e.g., solar energy)
 - *Transfer of water vapour* away from the surface (by wind)
 - 3. A *supply of water* for evaporation
- **Actual evaporation** is always *less* than potential evaporation (evaporation from the free water surface under the same conditions).
- Evaporation from the ground happens through direct evaporation and through evaporation from vegetation that suctions the water underground with their roots.

25

300

250

200

150

100

50

80

40

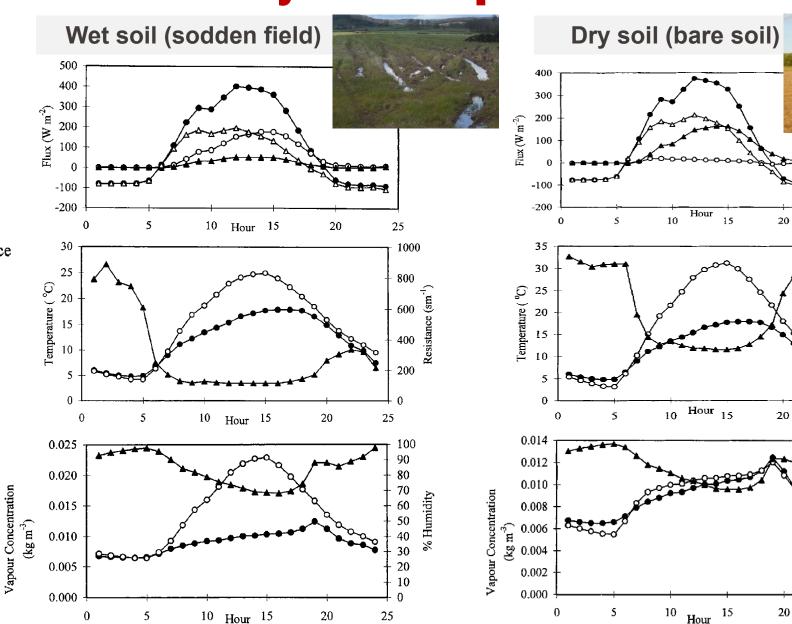
30

20

10

25

25

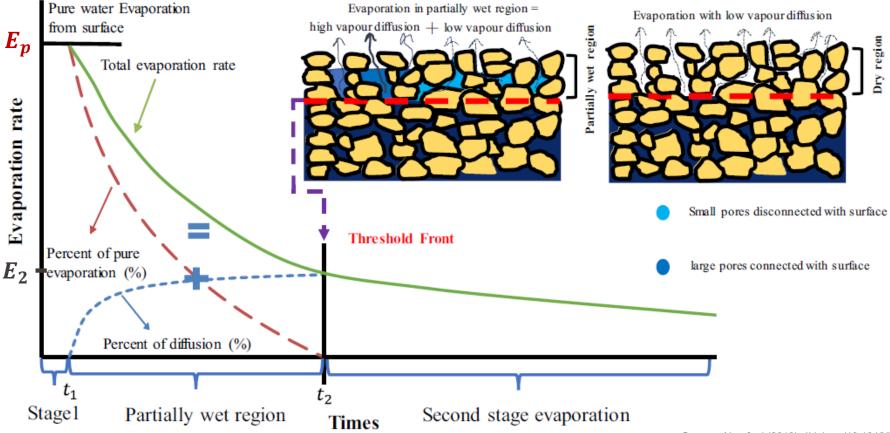

Resistance (s m⁻¹)

CIVIL-309 / LECTURE 06

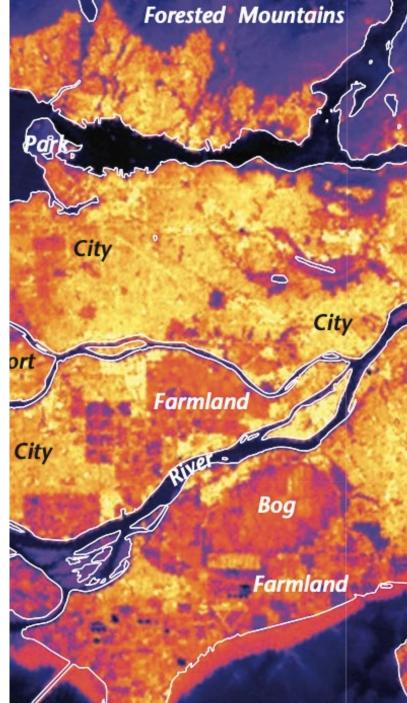
EPFL Evaporation: Wet vs. Dry Soil Comparison

- -- Net radiation
- → Sensible heat
- → Soil heat flux
- --- Evaporation
- → Aerodynamic resistance
- -O-Surface Temperature
- → Air Temperature

- Surface Concentration
- --- Air Concentration
- → Humidity

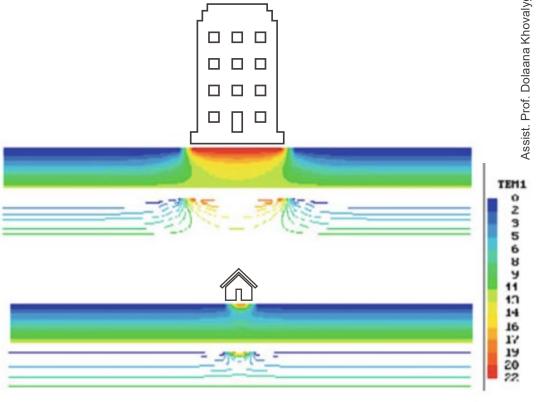


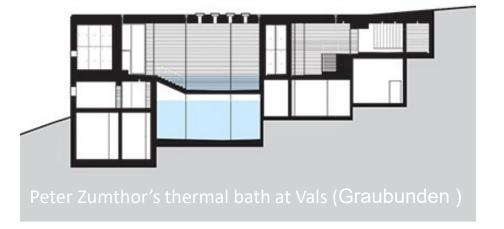
Source: Mason, Introduction to environmental physics, p. 349-350


EPFL Paved Surfaces: Evaporation Curve

- Evaporation rate is time dependent and defined by 3 stages:
 - (I) free surface evaporation, (II) water evaporation inside the pores, (III) vapor diffusion

Example: evaporation from porous asphalt (15-29%)

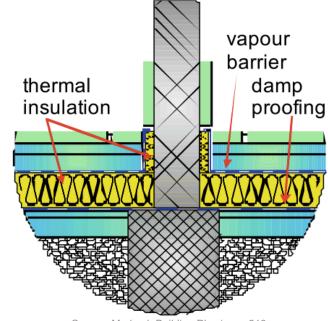



CONTENT:

- . Ground characteristics
 - Definitions: ground vs. soil
 - Thermo-physical properties
- **II.** Ground-environment interaction
 - Surface and sub-surface temperatures
 - Ground heat flux
 - Evaporation from the ground
- **III.** Ground-building interaction

EPFL Ground-building interaction: Thermal

- The presence of a building on the ground affects the ground temperature profile.
- The thermal behavior of a building wall in contact with the ground varies greatly from the one of a wall in contact with the air.
- Because of the constant lukewarm ground temperature under the sublayer:
 - o In winter, **thermal losses** through the wall are *lower* if the wall is in contact with the ground than if it is in contact with the air.
 - o In summer, **thermal gains** through the wall are *lower* if the wall is in contact with the ground than if it is in contact with the air.
- The side effect impacts the ground temperature:
 - o The **larger the building surface** in contact with the ground, the less it will be impacted by the <u>outdoor air temperature</u>.
 - o If the building **surface in contact** with the ground is **small**, ambient condition would greatly affect on the temperatures variation in deep ground.


EPFL Ground-building interaction: Thermal

Why some buildings are elevated above the ground level?

EPFL Ground-building interaction: Water

- Water uptake from ground to the building happens with capillary suction.
- Ground water suction of buildings can be prevented by:
 - Placing a damp proofing layer (impervious to water, e.g. metal sheets, stainless-tell) between the ground and the porous layer of the building.
 - Chemical or electrical process modifying the capacity of the building porous material to absorb water.
 - Water drainage is realized by aligning perforated pipes next to the building edge in a gravel backfill with a pumping system when necessary.
- It is important that building floor insulation is impermeable to water like extruded polystyrene or foamed glass.

Source: Medved, Building Physics, p.218

Image from weblink

Thank you for your attention

Assist. Prof.
Dolaana Khovalyg
dolaana.khovalyg@epfl.ch